UCSC Genome Browser

NAR Molecular Biology Database Collection entry number 316
Tyner, Cath1, Barber, Galt P.1, Casper, Jonathan1, Clawson, Hiram1, Diekhans, Mark1, Eisenhart, Christopher 1, Fischer, Clayton M.1, Gibson, David1, Navarro Gonzalez, Jairo1, Guruvadoo, Luvina1, Haeussler, Maximilian1, Heitner, Steve 2, Hinrichs, Angie S.1, Karolchik, Donna1, Lee, Brian T.1, Lee, Christopher M.1, Nejad, Parisa1, Raney, Brian J.1, Rosenbloom, Kate R.1, Speir, Matthew L.1, Villarreal, Chris1, Vivian, John1, Zweig, Ann S.1, Haussler, David1,3, Kuhn, Robert M.1, and Kent, W. James1
1Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA 2 Emory University School of Medicine, Atlanta, Georgia 30322, USA 3 Howard Hughes Medical Institute, University of California Santa Cruz, CA 95064, USA

Database Description

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a large collection of organisms, primarily vertebrates, with an emphasis on the human and mouse genomes. The Browser’s Web-based tools – including BLAT, the Table Browser, VisiGene, the Gene Sorter, Genome Graphs, and the Variant Annotation Integrator -- provide an integrated environment for visualizing, comparing, analyzing, and sharing both publicly available and user-generated genomic data sets. As of September 2016, the database contained genomic sequence and a basic set of annotation ‘tracks’ for 96 unique species, many with multiple assembly versions. Most genome assemblies offer mapping and sequence annotation tracks describing assembly, gap, and GC content, and alignments of mRNA, EST, and RefSeq data from GenBank. Some assemblies provide additional gene annotations and sequence alignments of selected species to facilitate comparative and evolutionary investigations. The heavily annotated human genome offers extensive conservation and evolutionary comparisons, a large collection of gene models, regulation, expression, epigenetics and tissue differentiation, variation, phenotype and disease association data, and text-mined data from publications. In addition to the native data sets local to the UCSC servers, the Genome Browser offers several options to users for viewing their own sequence and annotations: track and assembly data hubs, custom tracks, and sessions. The Genome Browser database and tools may also be installed on a local server for customized use. The full set of data, software tools, downloads, and documentation can be found on the Genome Browser website.

Recent Developments

During the 2015-16 timeframe, three new species assemblies were added (brown kiwi, aptMan1; crab-eating macaque, macFas5; Malayan flying lemur, galVar1) and new assembly versions were added for the following eight species: C. elegans (ce11), cat (felCat8), chicken (galGal5), gray mouse lemur (micMur2), platypus (ornAna2), rhesus macaque monkey (rheMac8), western clawed frog (xenTro7), and western gorilla (gorGor4). Support for new data types include CRAM, RNA-Seq expression data, and long-range chromatin interaction pairs. The GENCODE Genes set is now the default gene set for the latest GRCh38/hg38 human assembly, replacing the previous default set, UCSC Genes. Updated UCSC Genes tracks are available for human and mouse. A new 100-vertebrate conservation track was released on the hg38 human assembly that compares pairwise alignments for 100 species from a variety of clades. The C. elegans (ce11) 26-species conservation track was added, which shows the multiple alignments and measurements of evolutionary conservation for 26 nematode species. New user-interface changes include newly designed home and gateway pages as well as a new “multi-region” track display configuration for exon-only, gene-only, and custom regions visualization. The ability to make sessions public or add sessions to a new "public sessions gallery" was added. To assist users who are geographically closer to Asia, this year's changes include the unveiling of a new supported mirror site in Japan. Thirteen public hubs were also added.


Sincere gratitude is extended to the worldwide users of the UCSC Genome Browser, from college students who are just beginning their journey to experienced researchers. Special appreciation is extended to funders, collaborators, and contributors who give value beyond measure to the research possibilities within the browser. Much thanks is given to the exceptional group of system administrators, the management team, and all staff who support the UCSC Genome Browser.


1. Kent,W.J., Sugnet,C.W., Furey,T.S., Roskin,K.M., Pringle,T.H., Zahler,A.M. and Haussler, and D. (2002) The Human Genome Browser at UCSC. Genome Res., 12, 996–1006.
2. Speir,M.L., Zweig,A.S., Rosenbloom,K.R., Raney,B.J., Paten,B., Nejad,P., Lee,B.T., Learned,K., Karolchik,D., Hinrichs,A.S., et al. (2016) The UCSC Genome Browser database: 2016 update. Nucleic Acids Res., 44, D717–D725.
3. Zimin,A.V., Cornish,A.S., Maudhoo,M.D., Gibbs,R.M., Zhang,X., Pandey,S., Meehan,D.T., Wipfler,K., Bosinger,S.E., Johnson,Z.P., et al. (2014) A new rhesus macaque assembly and annotation for next-generation sequencing analyses. Biol. Direct, 9, 20.
4. Scally,A., Dutheil,J.Y., Hillier,L.W., Jordan,G.E., Goodhead,I., Herrero,J., Hobolth,A., Lappalainen,T., Mailund,T., Marques-Bonet,T., et al. (2012) Insights into hominid evolution from the gorilla genome sequence. Nature, 483, 169–175.
5. Pontius,J.U., Mullikin,J.C., Smith,D.R., Agencourt Sequencing Team, Lindblad-Toh,K., Gnerre,S., Clamp,M., Chang,J., Stephens,R., Neelam,B., et al. (2007) Initial sequence and comparative analysis of the cat genome. Genome Res., 17, 1675–1689.
6. Hellsten,U., Harland,R.M., Gilchrist,M.J., Hendrix,D., Jurka,J., Kapitonov,V., Ovcharenko,I., Putnam,N.H., Shu,S., Taher,L., et al. (2010) The Genome of the Western Clawed Frog Xenopus tropicalis. Science, 328, 633–636.
7. Warren,W.C., Hillier,L.W., Marshall Graves,J.A., Birney,E., Ponting,C.P., Grützner,F., Belov,K., Miller,W., Clarke,L., Chinwalla,A.T., et al. (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature, 453, 175–183.
8. Howe,K.L., Bolt,B.J., Cain,S., Chan,J., Chen,W.J., Davis,P., Done,J., Down,T., Gao,S., Grove,C., et al. (2016) WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res., 44, D774–D780.
9. Clark,K., Karsch-Mizrachi,I., Lipman,D.J., Ostell,J. and Sayers,E.W. (2016) GenBank. Nucleic Acids Res., 44, D67–D72.
10. Benson,G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res., 27, 573–580.
11. Stanke,M., Diekhans,M., Baertsch,R. and Haussler,D. (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24, 637–644.
12. Stanke,M. (2004) Gene prediction with a hidden Markov model.
13. Yates,A., Akanni,W., Amode,M.R., Barrell,D., Billis,K., Carvalho-Silva,D., Cummins,C., Clapham,P., Fitzgerald,S., Gil,L., et al. (2016) Ensembl 2016. Nucleic Acids Res., 44, D710–D716.
14. Cheung,V.G., Nowak,N., Jang,W., Kirsch,I.R., Zhao,S., Chen,X.N., Furey,T.S., Kim,U.J., Kuo,W.L., Olivier,M., et al. (2001) Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature, 409, 953–958.
15. Deloukas,P., Schuler,G.D., Gyapay,G., Beasley,E.M., Soderlund,C., Rodriguez-Tomé,P., Hui,L., Matise,T.C., McKusick,K.B., Beckmann,J.S., et al. (1998) A physical map of 30,000 human genes. Science, 282, 744–746.
16. Van Etten,W.J., Steen,R.G., Nguyen,H., Castle,A.B., Slonim,D.K., Ge,B., Nusbaum,C., Schuler,G.D., Lander,E.S. and Hudson,T.J. (1999) Radiation hybrid map of the mouse genome. Nat. Genet., 22, 384–387.
17. Schneider,V.A., Chen,H.-C., Clausen,C., Meric,P.A., Zhou,Z., Bouk,N., Husain,N., Maglott,D.R. and Church,D.M. (2013) Clone DB: an integrated NCBI resource for clone-associated data. Nucleic Acids Res., 41, D1070–D1078.
18. Harrow,J., Frankish,A., Gonzalez,J.M., Tapanari,E., Diekhans,M., Kokocinski,F., Aken,B.L., Barrell,D., Zadissa,A., Searle,S., et al. (2012) GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res., 22, 1760–1774.
19. O’Leary,N.A., Wright,M.W., Brister,J.R., Ciufo,S., Haddad,D., McVeigh,R., Rajput,B., Robbertse,B., Smith-White,B., Ako-Adjei,D., et al. (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res., 44, D733-745.
20. Hsu,F., Kent,W.J., Clawson,H., Kuhn,R.M., Diekhans,M. and Haussler,D. (2006) The UCSC Known Genes. Bioinformatics, 22, 1036–1046.
21. Amberger,J.S., Bocchini,C.A., Schiettecatte,F., Scott,A.F. and Hamosh,A. (2015) OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 43, D789–D798.
22. Landrum,M.J., Lee,J.M., Benson,M., Brown,G., Chao,C., Chitipiralla,S., Gu,B., Hart,J., Hoffman,D., Hoover,J., et al. (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res., 44, D862-868.
23. Hunter,J.E., Irving,S.A., Biesecker,L.G., Buchanan,A., Jensen,B., Lee,K., Martin,C.L., Milko,L., Muessig,K., Niehaus,A.D., et al. (2016) A standardized, evidence-based protocol to assess clinical actionability of genetic disorders associated with genomic variation. Genet. Med., 10.1038/gim.2016.40.
24. Jefferson,O.A., Köllhofer,D., Ehrich,T.H. and Jefferson,R.A. (2013) Transparency tools in gene patenting for informing policy and practice. Nat. Biotechnol., 31, 1086–1093.
25. Gire,S.K., Goba,A., Andersen,K.G., Sealfon,R.S.G., Park,D.J., Kanneh,L., Jalloh,S., Momoh,M., Fullah,M., Dudas,G., et al. (2014) Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 345, 1369–1372.
26. Cabili,M.N., Trapnell,C., Goff,L., Koziol,M., Tazon-Vega,B., Regev,A. and Rinn,J.L. (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev., 25, 1915–1927.
27. Trapnell,C., Williams,B.A., Pertea,G., Mortazavi,A., Kwan,G., van Baren,M.J., Salzberg,S.L., Wold,B.J. and Pachter,L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515.
28. Griffiths-Jones,S., Saini,H.K., van Dongen,S. and Enright,A.J. (2007) miRBase: tools for microRNA genomics. Nucleic Acids Res., 36, D154–D158.
29. Weber,M.J. (2004) New human and mouse microRNA genes found by homology search: New human and mouse microRNA gene. FEBS J., 272, 59–73.
30. GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. Nat. Genet., 45, 580–585.
31. Consortium,T.Gte., Ardlie,K.G., Deluca,D.S., Segrè,A.V., Sullivan,T.J., Young,T.R., Gelfand,E.T., Trowbridge,C.A., Maller,J.B., Tukiainen,T., et al. (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 348, 648–660.
32. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.
33. Rosenbloom,K.R., Sloan,C.A., Malladi,V.S., Dreszer,T.R., Learned,K., Kirkup,V.M., Wong,M.C., Maddren,M., Fang,R., Heitner,S.G., et al. (2013) ENCODE Data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res., 41, D56–D63.
34. Sloan,C.A., Chan,E.T., Davidson,J.M., Malladi,V.S., Strattan,J.S., Hitz,B.C., Gabdank,I., Narayanan,A.K., Ho,M., Lee,B.T., et al. (2016) ENCODE data at the ENCODE portal. Nucleic Acids Res., 44, D726-732.
35. Sherry,S.T., Ward,M.-H., Kholodov,M., Baker,J., Phan,L., Smigielski,E.M. and Sirotkin,K. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 29, 308–311.
36. Auton,A., Abecasis,G.R., Altshuler,D.M., Durbin,R.M., Abecasis,G.R., Bentley,D.R., Chakravarti,A., Clark,A.G., Donnelly,P., Eichler,E.E., et al. (2015) A global reference for human genetic variation. Nature, 526, 68–74.
37. Database resources of the National Center for Biotechnology Information (2016) Nucleic Acids Res., 44, D7–D19.
38. Haeussler,M., Schönig,K., Eckert,H., Eschstruth,A., Mianné,J., Renaud,J.-B., Schneider-Maunoury,S., Shkumatava,A., Teboul,L., Kent,J., et al. (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol., 17.
39. Stelzer,G., Rosen,N., Plaschkes,I., Zimmerman,S., Twik,M., Fishilevich,S., Stein,T.I., Nudel,R., Lieder,I., Mazor,Y., et al. (2016) The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses: The GeneCards Suite. In Bateman,A., Pearson,W.R., Stein,L.D., Stormo,G.D., Yates,J.R. (eds), Current Protocols in Bioinformatics. John Wiley & Sons, Inc., Hoboken, NJ, USA, p. 1.30.1-1.30.33.
40. Karolchik,D., Kuhn,R.M., Baertsch,R., Barber,G.P., Clawson,H., Diekhans,M., Giardine,B., Harte,R.A., Hinrichs,A.S., Hsu,F., et al. (2007) The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res., 36, D773–D779.
41. Karolchik,D., Hinrichs,A.S., Furey,T.S., Roskin,K.M., Sugnet,C.W., Haussler,D. and Kent,W.J. (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res., 32, D493–D496.
42. Hinrichs,A.S., Raney,B.J., Speir,M.L., Rhead,B., Casper,J., Karolchik,D., Kuhn,R.M., Rosenbloom,K.R., Zweig,A.S., Haussler,D., et al. (2016) UCSC Data Integrator and Variant Annotation Integrator. Bioinformatics, 32, 1430–1432.
43. Zhou,X., Lowdon,R.F., Li,D., Lawson,H.A., Madden,P.A.F., Costello,J.F. and Wang,T. (2013) Exploring long-range genome interactions using the WashU Epigenome Browser. Nat. Methods, 10, 375–376.
44. Raney,B.J., Dreszer,T.R., Barber,G.P., Clawson,H., Fujita,P.A., Wang,T., Nguyen,N., Paten,B., Zweig,A.S., Karolchik,D., et al. (2014) Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics, 30, 1003–1005.
45. Haeussler,M., Raney,B.J., Hinrichs,A.S., Clawson,H., Zweig,A.S., Karolchik,D., Casper,J., Speir,M.L., Haussler,D. and Kent,W.J. (2015) Navigating protected genomics data with UCSC Genome Browser in a Box. Bioinformatics, 31, 764–766.
46. Afgan,E., Baker,D., van den Beek,M., Blankenberg,D., Bouvier,D., Čech,M., Chilton,J., Clements,D., Coraor,N., Eberhard,C., et al. (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res., 44, W3–W10.
47. Kent,W.J. (2002) BLAT--the BLAST-like alignment tool. Genome Res., 12, 656–664..

Go to the article in the NAR Database issue.
Oxford University Press is not responsible for the content of external internet sites